Pig Embryonic Pancreatic Tissue as a Source for Transplantation in Diabetes
نویسندگان
چکیده
OBJECTIVE Defining an optimal costimulatory blockade-based immune suppression protocol enabling engraftment and functional development of E42 pig embryonic pancreatic tissue in mice. RESEARCH DESIGN AND METHODS Considering that anti-CD40L was found to be thrombotic in humans, we sought to test alternative costimulatory blockade agents already in clinical use, including CTLA4-Ig, anti-LFA1, and anti-CD48. These agents were tested in conjunction with T-cell debulking by anti-CD4 and anti-CD8 antibodies or with conventional immunosuppressive drugs. Engraftment and functional development of E42 pig pancreatic tissue was monitored by immunohistology and by measuring pig insulin blood levels. RESULTS Fetal pig pancreatic tissue harvested at E42, or even as early as at E28, was fiercely rejected in C57BL/6 mice and in Lewis rats. A novel immune suppression comprising anti-LFA1, anti-CD48, and FTY720 afforded optimal growth and functional development. Cessation of treatment with anti-LFA1 and anti-CD48 at 3 months posttransplant did not lead to graft rejection, and graft maintenance could be achieved for >8 months with twice-weekly low-dose FTY720 treatment. These grafts exhibited normal morphology and were functional, as revealed by the high pig insulin blood levels in the transplanted mice and by the ability of the recipients to resist alloxan induced diabetes. CONCLUSIONS This novel protocol, comprising agents that simulate those approved for clinical use, offer an attractive approach for embryonic xenogeneic transplantation. Further studies in nonhuman primates are warranted.
منابع مشابه
Embryonic Pig Pancreatic Tissue Transplantation for the Treatment of Diabetes
BACKGROUND Transplantation of embryonic pig pancreatic tissue as a source of insulin has been suggested for the cure of diabetes. However, previous limited clinical trials failed in their attempts to treat diabetic patients by transplantation of advanced gestational age porcine embryonic pancreas. In the present study we examined growth potential, functionality, and immunogenicity of pig embryo...
متن کاملEngraftment of Insulin-Producing Cells from Porcine Islets in Non-Immune-Suppressed Rats or Nonhuman Primates Transplanted Previously with Embryonic Pig Pancreas
Transplantation therapy for diabetes is limited by unavailability of donor organs and outcomes complicated by immunosuppressive drug toxicity. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce transplant immunogenicity. Insulin-producing cells originating from embryonic pig pancreas obtained very early fo...
متن کاملA review of advances in pancreatic tissue engineering
Background: A common treatment for patients with type 1 diabetes in which pancreatic beta cells are destroyed by their own immune system attack, is insulin injection. Because this treatment is not able to maintain complete glucose homeostasis compared to the function of endogenous insulin secreted by the pancreas; in the field of pancreatic tissue engineering, various treatment strategies have ...
متن کاملFetal Pancreas as a Source for Islet Transplantation
The early hope that islet transplantation might offer an attractive treatment modality for latestage type 1 diabetes has been tempered over the last decade, largely due to the observation that the transplants exhibit reduced insulin production after a few years (1). This limitation could be associated with some form of immune rejection or the inability of the implanted islets to replenish dying...
متن کاملXenotransplantation of embryonic pig pancreas for treatment of diabetes mellitus in non-human primates.
Transplantation therapy for diabetes in humans is limited by the low availability of human donor whole pancreas or islets. Outcomes are complicated by immunosuppressive drug toxicity. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce transplant immunogenicity. Pig insulin is biologically active in humans....
متن کامل